Webinar : CPAP SCIENCE

Slide No.	Text matter to be spoken	Remarks
1.	In this Webinar we will learn about the science behind	
	and physiology of antenatal steroids, continuous	
	positive airway pressure or CPAP & Surfactant	
2.	Let us understand and learn How antenatal	
	steroids work, how does CPAP work, and what is	
	the mechanism of working of surfactant. In	
	addition, we will try and learn the synergism	
	between ANS, CPAP & surfactant in management	
	of a preterm neonate with RDS.	
3.	Let us begin by realising what is our quantum of	
	preterm births.	
	India has the dubious distinction of having the highest	
	number of preterm births and neonatal deaths due to	
	prematurity.	
	Out of an estimated 2.6 crore live births in India each	
	year, 35 lakh babies are born preterm, and out of	
	these, 3 lakh babies (10% approximately) die due to	
	complications of preterm births	
4.	Preterm neonates are vulnerable and Fetal	
	lung immaturity is the principal contributor	
	for neonatal mortality	
	Therefore lung has been the primary focus of	
	strategies to improve the survival of	
	newborn infants	
	Strategies for the prevention and treatment of RDS	
	have been directed towards the acceleration of	
	fetal lung maturation in utero mainly by	
	administering ANS to the mother and CPAP with or	
	without surfactant to neonate	
5.	Out of these three potentially useful strategies for	
	the preterm neonate let us learn the science and	
	understand how antenatal steroids work.	
	Antenatal steroids accelerate development	
	of pneumocytes, thus improving lung	
	mechanics (maximizing lung volume and	

	compliance) and thus gas exchange.	
	It increases surfactant production.	
	There is not just induction of surfactant	
	release but also absorption of alveolar fluid	
	and increase of lung antioxidant enzymes;	
	resulting in reduction in RDS,	
	reduction in Intraventricular hemmorhage,	
	Necrotising enterocolitis,	
	systemic sepsis and mortality.	
6.	After having learnt about Antenatal steroids Let us	
	now talk about CPAP.	
	First thing in CPAP is to know What is CPAP. Well	
	CPAP as it is abbreviated is continuous positive	
	airway pressure which really refers to	
	aapplication of continuous pressure to the airways	
	during both inspiration and expiration in a	
	spontaneously breathing baby	
7.	Now we will try and understand what does CPAP	
	do? Well CPAP keeps the alveoli open by providing	
	constant airway pressure, as also splints the	
	airways so that they do not collapse. These thus	
	increases the functional residual capacity (FRC) of	
	the lungs resulting in better breathing and better	
	gas exchange culminating in lesser lung injury.	
8 & 9.	Let us understand how CPAP helps –	
	In a baby with RDS the Functional Residual Capacity	
	of Lung i.e. FRC is reduced. FRC is the volume of air	
	present in the lungs at the end of normal	
	expiration. Reduced FRC allows alveoli to collapse	
	at end of expiration.	
	What CPAP does is - it increases the FRC which	
	helps to keep the alveoli open and decreases the	
	Ventilation Perfusion mismatch thus improving	
	oxygenation, washing out carbon di oxide and	
	improving the pH.	
	It splints the upper airways preventing obstructive	
	apnea and dilates the lower airways thus reducing	
	the airway resistance.	
	Overall the Tidal volume improves and the work of	

	breathing decreases. With improved physiology the pneumocyte 2 which produces surfactant functions better with better recycling and production of surfactant.	
	Overall this culminates in improved lung	
	compliance and better gas exchange.	
10.	Let us understand why conventional mechanical ventilation is not the best modality for managing RDS. I would like to illustrate this by sharing with you the animal experiments which will convince that CPAP is better than conventional ventilation.	
	Here is preterm Lamb lung in which alveolar septa are damaged following 24 hours of ventilation. Though the FRC is increased following ventilation but the effective surface area for gas exchange has decreased. In preterm, the alveolar wall is thin with less supporting tissue , hence more prone to damage.	
11.	Notice in this preterm lamb, following 72 hours of conventional ventilation the inter alveolar wall thickness is 3 to 4 times when compared with another in which nasal CPAP is given. With thickened alveolar wall the gas exchange will become difficult in preterm.	

12.	The greatest hazard to preterm baby lung is due to endotracheal tube causing Biotrauma. In CV Many alveoli at end of expiration collapse due to low peak end expiratory pressure; – the sudden opening and closing of alveoli leads to atelecto trauma; while in CPAP due to constant continuous pressure this injury is minimal. CV causes Barotrauma due to high mean airway pressure and variable Peak Inspiratory Pressure while in CPAP pressure delivered is much less . Unregulated Tidal volume in CV causes Volutrauma. So CPAP is like a Magic. It opens the lung at FRC for better gas exchange and keeps the lung open with minimal pressure in stark difference to CV. Thus there is negligible barotrauma, Baby is breathing spontaneously deciding its Tidal Volume , so no volutrauma but most important as there is no endotracheal tube there is no bio-trauma . Pulmonary arterial pressures are least with improved blood flow, hence less VQ mismatch. Having understood the magic of CPAP, Let us understand the relationship between lung volume depicted on the X axis and pulmonary vascular resistance shown on the y axis. Pulmonary vascular resistance (PVR) is least once the lung is open at the FRC, at this the blood flow is maximum with	
	best ventilation perfusion matching and gas exchange.	
14.	You can see on Right- baby with meconium aspiration syndrome has higher lung volume while on left a baby with hyaline membrane disease has lower lung volume but both result in high PVR. In clinical practice, for a baby on CPAP with higher pressure the lung will over distend while low CPAP will cause reduced FRC – in both PVR will increase causing Rt to left shunt impairing pulmonary blood	

	flow. Thus we must ensure lung is opened at FRC for best blood flow and better gas exchange.	
45		
15.	Alveoli are lined with water molecules which tend	
	to pull alveoli towards centre – this can be nullified	
	by CPAP pressure or by reducing the surface	
	tension by giving surfactant and if both are done	
	simultaneously synergistic action can be obtained.	
	This has gone into clinical practice and is called as	
	INSURE.	
16.	Going further from this let us see how surfactant	
	works. Pulmonary surfactant is a surface-active	
	lipoprotein complex (phospholipoprotein) formed	
	by <u>type II alveolar cells</u> .	
	The proteins and lipids that make up the <u>surfactant</u>	
	have both <u>hydrophilic</u> and <u>hydrophobic</u> regions. By	
	adsorbing to the air-water interface of alveoli, with	
	hydrophilic head groups in the water and the	
	hydrophobic tails facing towards the air, the main	
	lipid component of surfactant, <u>dipalmitoyl</u>	
	phosphatidyl choline (DPPC), reduces <u>surface</u> tension.	
	They thus increase <u>pulmonary compliance</u> , prevent	
	atelectasis (collapse of the lung) at the end of	
	expiration and also facilitate recruitment of	
	collapsed airways.	
17.	Hence, we learnt CPAP is safe as it causes less lung	
	injury. One should give optimal CPAP to open the	
	lung at FRC as pulmonary vascular resistance is	
	least with maximum blood flow. Use of surfactant	
	and CPAP together is beneficial in RDS . It is also	
	very important to understand that CPAP will give	
	maximum dividends if you use antenatal steroids	
	for preterm labor, early surfactant when required	
	and have good delivery room care.	